自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

知行_那片天

知,行,寻找我的那片天

  • 博客(8)
  • 论坛 (1)
  • 收藏
  • 关注

原创 机器学习&深度学习算法及代码实现

最近在学机器学习,学习过程中收获颇多,在此留下学习记录,希望与同道中人相互学习交流机器学习简介1、机器学习运用学习算法,利用所给的数据进训练,生成相应的模型。在面对新情况时,根据模型,给出正确的判断。2、学习的定义针对经验E (experience) 和一系列的任务 T (tasks) 和一定表现的衡量 P,如果随之经验E的积累,针对定义好的任务T可以提高表现P,就说计算机具有学习能力。

2017-04-05 20:38:50 18032 2

原创 机器学习算法及代码实现--回归算法

机器学习算法及代码实现–回归算法1 线性回归 线性回归假设特征和结果满足线性关系。其实线性关系的表达能力非常强大,每个特征对结果的影响强弱可以由前面的参数体现,而且每个特征变量可以首先映射到一个函数,然后再参与线性计算。这样就可以表达特征与结果之间的非线性关系。 假设有一个房屋销售的数据如下: 我们可以做出一个图,x轴是房屋的面积。y轴是房屋的售价,如下: 我们用X1,X2..X

2017-04-13 22:13:28 1442

原创 机器学习算法及代码实现--神经网络

机器学习算法及代码实现–神经网络1、神经网络神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼

2017-04-05 20:33:43 3718 1

原创 机器学习算法及代码实现--神经网络

机器学习算法及代码实现–神经网络1、神经网络神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼

2017-04-05 20:32:18 2150

原创 机器学习算法及代码实现--神经网络

机器学习算法及代码实现–神经网络1、神经网络神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼

2017-04-05 20:27:19 885

原创 机器学习算法及代码实现--支持向量机

机器学习算法及代码实现–支持向量机1、支持向量机SVM希望通过N-1维的分隔超平面线性分开N维的数据,距离分隔超平面最近的点被叫做支持向量,我们利用SMO(SVM实现方法之一)最大化支持向量到分隔面的距离,这样当新样本点进来时,其被分类正确的概率也就更大。我们计算样本点到分隔超平面的函数间隔,如果函数间隔为正,则分类正确,函数间隔为负,则分类错误,函数间隔的绝对值除以||w||就是几何间隔,几何间隔

2017-04-05 20:13:31 4194

原创 机器学习算法及代码实现--K邻近算法

机器学习算法及代码实现–K邻近算法1、K邻近算法将标注好类别的训练样本映射到X(选取的特征数)维的坐标系之中,同样将测试样本映射到X维的坐标系之中,选取距离该测试样本欧氏距离(两点间距离公式)最近的k个训练样本,其中哪个训练样本类别占比最大,我们就认为它是该测试样本所属的类别。2、算法步骤: 1)为了判断未知实例的类别,以所有已知类别的实例作为参照 2)选择参数K 3)计算未知实例与所有已知实例

2017-04-05 19:56:00 3232

原创 机器学习算法及代码实现--决策树

二、机器学习算法及其代码实现–决策树1、决策树决策树算法的核心在于决策树的构建,每次选择让整体数据香农熵(描述数据的混乱程度)减小最多的特征,使用其特征值对数据进行划分,每次消耗一个特征,不断迭代分类,直到所有特征消耗完(选择剩下数据中出现次数最多的类别作为这堆数据的类别),或剩下的数据全为同一类别,不必继续划分,至此决策树构建完成,之后我们依照这颗决策树对新进数据进行分类。2、信息熵一条信息的信息

2017-04-05 19:47:47 7538 6

空空如也

Doit_的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除