自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

知行_那片天

知,行,寻找我的那片天

  • 博客(8)
  • 论坛 (1)
  • 收藏
  • 关注

转载 机器学习&深度学习入门学习资料大全(一)

机器学习&深度学习入门学习资料大全(一)

2017-05-29 11:12:53 4289

转载 机器学习&深度学习入门学习资料大全(二)

机器学习&深度学习入门学习资料(二)

2017-05-29 11:06:53 796

原创 神经网络学习笔记

神经网络学习笔记感知器感知器学习神经元,电位超过阖值触发,是神经元的简易数学模型。 传统计算机0、1表示,基于电位模数转换,与神经元类似。计算机基于0,1可实现人脑部分功能,是否就基于此。 根据电位阖值来区分不同状态是否是一个智能的基本物理原则。 智能最低端是应激反应,应激反应是否就是来自于电位阖值。 所有智能体的最本质能力是否就是应激反应,或者说是–决策。 高级智能由低级决策决定,是否可

2017-05-29 10:32:27 1112

原创 生成对抗网络介绍与原理分析

生成对抗网络介绍与原理分析简介生成对抗网络就是利用生成模型G和判别模型D的的相互博弈,提升生成模型的生成能力和判别模型的判别能力,直至生成模型所生成的与原始数据难以分辨。原理 判别模型D:不断优化D,使其输入真实数据x时输出1,输入生成数据G(z)时输出0. 生成模型G:不断优化G,使其生成的数据被判断为真(输出1).公式 最大化D:D(X)->1,D(G(z))->0,log内趋近于1,整个

2017-05-10 15:06:08 1356

原创 感知器-从零开始学深度学习

感知机-从零开始学深度学习未来将是人工智能和大数据的时代,是各行各业使用人工智能在云上处理大数据的时代,深度学习将是新时代的一大利器,在此我将从零开始记录深度学习的学习历程。 我希望在学习过程中做到以下几点: 了解各种神经网络设计原理。 掌握各种深度学习算法的python编程实现。 运用深度学习解决实际问题。 让我们开始踏上深度度学习的征程。一、感知机原型 想要

2017-05-07 16:46:06 3708 3

原创 生成对抗网络入门详解及TensorFlow源码实现--深度学习笔记

生成对抗网络入门详解及TensorFlow源码实现–深度学习笔记一、生成对抗网络(GANs)生成对抗网络是一种生成模型(Generative Model),其背后最基本的思想就是从训练库里获取很多的训练样本(Training Examples),从而学习这些训练案例生成的概率分布。 GAN[Goodfellow Ian,GAN]启发自博弈论中的二人零和博弈(two-player game),由[G

2017-05-03 12:09:19 4296 1

原创 RNN入门详解及TensorFlow源码实现--深度学习笔记

RNN入门详解及TensorFlow源码实现–深度学习笔记一、RNN简介RNNs的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNNs之所以称为循环神经网路,即一个序列当前的输

2017-05-03 11:50:15 8530

原创 CNN入门详解及TensorFlow源码实现--深度学习笔记

CNN入门详解及TensorFlow实现源码–深度学习笔记一、卷积神经网络1、简介卷积神经网络是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷

2017-05-03 11:10:57 6535 3

空空如也

Doit_的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除